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Robot Data Diet

How can we obtain data for robot imitation learning?
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Cotraining: use both datasets to train a model that
maximizes a real-world performance objective
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Cotraining: use both datasets to train a model that
maximizes a real-world performance objective

Performance Objective:
Success rate on planar
pushing from pixels

Focusing on a single canonical task enables controlled and thorough analysis



Cotraining: use both datasets to train a model that
maximizes a real-world performance objective

Performance Objective: Model:
Success rate on planar Diffusion Policy

pushing from pixels
Lpa = (XLDR + (1 — CM)E'DS

Real-World Dataset: Simulated Dataset:
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Does Cotraining Improve Performance?

Policy trained with Policy cotrained with
50 real demos, 0 sim demos 50 real demos, 2000 sim demos

Success rate: 10/20 — Success rate: 18/20

1.8x improvement!



Does Cotraining Improve Performance?

Policy trained with Policy cotrained with
10 real demos, O sim demos 10 real demos, 2000 sim demos

Success rate: 2/20 — Success rate: 14/20

7X improvement!



Key Takeaways: Performance Gains
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* Cotraining improved performance up to 7x!
* Cotraining is most effective in the low to medium data regime.

* Scaling simulated data alone is insufficient!



The Effect of Sim2Real Gaps (i.e. distribution shifts)

Which sim2real gaps affect the value of simulated data?

Example: Analyzing Color Shift

“True” Color Increasing “Color Shift”

Ex. Analyze policies trained on increasing intensities of color shift



The Effect of Sim2Real Gaps (i.e. distribution shifts)
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Key Takeaways: Sim2Real Gaps

(" Visual Shifts No Shift Level 1 Level 2 Level 3 Level4 )

* Cotraining still improves performance...
but all gaps reduce the value of sim data it .....
... [
Randomization
* Physics & task gaps were most impactful
— N

* Better rendering improves performance, oprent shit
] jec i
but perfect rendering hurts performance! S - . . . . .




Sim vs Real “Expert”

Real-World Demos

* Fixes orientation first,
, i then translation

Sim Demos
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Sim VS Real ¢ Expert” Distinctly more similar

to real-world expert!
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Binary probes show that policies are
learning to distinguish sim from real!




Sim & Real Discernability

Success Rate vs a for |[Dr| =50, |Ds| = 500
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High-performing policies must learn to identify sim vs real

since the physics of each environment requires different actions



Positive Transfer: Scaling Law

Scaling sim data improves real-world test loss according to a power law!

Scaling Laws for Test Loss Scaling Laws for Action MSE
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Positive Transfer: Scaling Law

Scaling sim data improves real-world test loss according to a power law!

Scaling Laws for Test Loss

Target Test Loss
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Target Action MSE
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Scaling Laws for Action MSE
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A sim demo is worth ~0.5-0.8 real demos



Empirical Analysis of Sim-and-Real Cotraining

 Simulation is a promising tool for scaling data generation in robotics
* We study the principles and mechanisms of cotraining from both
sim and real data

Our Paper Personal Website (Adam Wei)
Scan to learn more! Feel free to reach out!



